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What is this course about?

As the title suggests, this course is about the formalization of mathematics, but the title “digitiza-
tion of mathematics” would have been just as appropriate. More precisely, the goal of this course
is to teach students how to explain mathematics (definitions, theorems, proofs, etc.) to a computer
in such a way so that the consistency of definitions and correctness proofs can be verified by the
machine. There are a number of reasons that would motivate a mathematician to digitize a piece
of mathematics, and here are just a few:

• The formal verification of the correctness of a complicated proof.

• It helps us come up with better abstractions and definitions.

• When asynchronously collaborating with others, it helps in ensuring consistency at all times.

• It allows us to build open-source libraries of formally verified mathematics.

• In the (near) future, it will help incorporate tools from machine learning and AI in the
mathematician’s workflow.

Many of these reasons, among others, are summarized nicely in a note written by P. Massot,
titled Why formalize mathematics? . This course will act as an introduction to the formaliza-
tion/digitization of mathematics, using the Lean4 interactive proof assistant. Students will learn
how to write mathematical definitions, theorems, and proofs, in a way that can be understood and
checked by the computer. At the same time, this course will provide a tour of portions of Lean4’s
formally verified mathematics library mathlib4.

Why now?

Formal verification has existed for a while now, but in the past it mostly focused on the formal
verification of critical software and hardware, or the formal verification of simple mathematical
statements. Some notable exceptions exist, among them is the Flyspeck Project, which formally
verified Tom Hales’ proof of the Kepler conjecture; see this paper for more details. Another is the
formalization of the odd-order theorem from finite group theory.
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https://www.imo.universite-paris-saclay.fr/~patrick.massot/files/exposition/why_formalize.pdf
https://github.com/leanprover-community/mathlib4
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC/S2050508617000014a.pdf/div-class-title-a-formal-proof-of-the-kepler-conjecture-div.pdf
https://link.springer.com/chapter/10.1007/978-3-642-39634-2_14


In recent years, the subject has seen a surge of activity. In my opinion, there are two main
reasons for this. First, it has become clear that fashionable research-level mathematics can be
formalized in reasonably short amounts of time. Some notable recent examples include:

1. The formalization of perfectoid spaces, which are complicated objects appearing in modern
arithmetic geometry.

2. The sphere eversion project, which formally verified the existence of a sphere eversion via
Gromov’s h-principle.

3. The liquid tensor experiment, which formally verified the main theorem of liquid vector spaces
due to Clausen-Scholze. This project arose in response to a challenge posed by fields medalist
P. Scholze in December 2020.

Second, it has become clear to many that digitization will play an increasingly important role
in the usual practice of mathematics, particularly with recent advances in AI. Just in the last 12
months, there have been three high profile events on the use of computers in mathematics where
formalization has played a prominent role:

1. The IPAM workshop on machine assisted proofs.

2. The fields medal symposium in honour of fields medalist A. Venkatesh.

3. A workshop on interactions between AI and mathematics organized by the national academies
of sciences, engineering and mathematics.

What is certainly clear to anyone working in this area, myself included, is that the digitization of
mathematics will change how mathematicians work in the future. Right now we have an opportunity
to help shape what such changes will look like.

More about the course

This Math 681 course is also a PIMS network-wide graduate course, meaning that anyone from
the PIMS network can register to receive credit. This is an online course, and lectures will take
place on Tuesday and Thursdays at 11am to 12:20pm (Edmonton time), using zoom (or something
similar). A complete syllabus can be found here.

This course has no strict mathematical prerequisites. While I don’t expect students to be
absolute experts in the mathematical areas listed on the syllabus, some familiarity is expected. The
most important (and only actual) prerequisite for this course is a sufficient amount of mathematical
maturity. Students should be able to pick up any unfamiliar concepts as the term progresses.

If you might be interested in taking this course but still have some reservations, please don’t
hesitate to contact me; my email address is topaz@ualberta.ca.

Lean4

As I mentioned above, we will use the Lean4 interactive proof assistant for this course. This is an
open-source language, developed primarily by L. de Moura and S. Ullrich, and is backed by a large
community and mathematics library.
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https://leanprover-community.github.io/lean-perfectoid-spaces/
https://leanprover-community.github.io/sphere-eversion/
https://github.com/leanprover-community/lean-liquid
https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/
https://www.ipam.ucla.edu/programs/workshops/machine-assisted-proofs/
http://www.fields.utoronto.ca/activities/22-23/fieldsmedalsym
https://www.nationalacademies.org/event/06-12-2023/ai-to-assist-mathematical-reasoning-a-workshop
https://courses.pims.math.ca/courses/2023-2024/formalization-of-mathematics/syllabus.pdf
mailto:topaz@ualberta.ca
https://leanprover.github.io/
https://leanprover-community.github.io/
https://leanprover-community.github.io/
https://github.com/leanprover-community/mathlib4


Below are some code snippets which illustrate what this language looks like for the purposes
of formalized mathematics, copied directly from mathlib4. I should stress that this code is meant
to be read with the help of an editor, which activates the interactive nature of an interactive proof
assistant. By using the editor, the user can see, at each step of the proof, the precise mathematical
context and goals. Here is a short video about proving the infinitude of primes using Lean3,
highlighting the interactive nature of the system. So, while the code below may look intimidating
at first, the process of writing this code is quite similar to the usual practice of mathematics, albeit
with a additional help from the computer.

Example. Any normal Sylow p-subgroup is characteristic:

theorem characteristic_of_normal {p : N} [Fact p.Prime] [Finite (Sylow p G)]
(P : Sylow p G) (h : (P : Subgroup G).Normal) :
(P : Subgroup G).Characteristic := by

haveI := Sylow.subsingleton_of_normal P h
rw [characteristic_iff_map_eq]
intro Φ
show (Φ · P).toSubgroup = P.toSubgroup
congr
simp

Example. Any category which has all (small) products and all equalizers has all (small) limits.

theorem has_limits_of_hasEqualizers_and_products [HasProducts.{w} C] [HasEqualizers C] :
HasLimitsOfSize.{w, w} C :=

{ has_limits_of_shape :=
fun _ _ => { has_limit := fun F => hasLimit_of_equalizer_and_product F } }

Example. The law of quadratic reciprocity.

theorem quadratic_reciprocity (hp : p ̸= 2) (hq : q ̸= 2) (hpq : p ̸= q) :
legendreSym q p ∗ legendreSym p q = (-1) ^ (p / 2 ∗ (q / 2)) := by

have hp1 := (Prime.eq_two_or_odd <| @Fact.out p.Prime _).resolve_left hp
have hq1 := (Prime.eq_two_or_odd <| @Fact.out q.Prime _).resolve_left hq
have hq2 : ringChar (ZMod q) ̸= 2 := (ringChar_zmod_n q).substr hq
have h :=
quadraticChar_odd_prime ((ringChar_zmod_n p).substr hp) hq ((ringChar_zmod_n
p).substr hpq)

rw [card p] at h
have nc : ∀ n r : N, ((n : Z) : ZMod r) = n := fun n r => by norm_cast
have nc′ : (((-1) ^ (p / 2) : Z) : ZMod q) = (-1) ^ (p / 2) := by norm_cast
rw [legendreSym, legendreSym, nc, nc, h, map_mul, mul_rotate′, mul_comm (p / 2), ←
pow_two,
quadraticChar_sq_one (prime_ne_zero q p hpq.symm), mul_one, pow_mul, χ4

_eq_neg_one_pow hp1, nc′,
map_pow, quadraticChar_neg_one hq2, card q, χ4_eq_neg_one_pow hq1]
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https://www.youtube.com/watch?v=ArGLTAjak3g

